HR EBSD vs. Conventional EBSD
It is well understood that residual strain affects most aspects of a material’s performance. Standard SEM based EBSD primarily provides maps of the spatial distribution of crystal orientation, i.e. crystallographic texture and nearest neighbour misorientation also known as meso-structure. We know that these factors contribute to the mechanical properties of polycrystalline materials and that they arise from the orientation relationship between the internal stress state and the crystal slip systems.
Clearly there is a need to understand the details of a material’s stress state but attempts using conventional EBSD have only yielded qualitative and semi-quantitative results.
With the introduction of cross correlation based HR EBSD we can now quantitatively map the internal stress state and reveal the interaction between the applied load and the features of the internal structure.
Read More
How It Works
CrossCourt4 takes as its input data high quality EBSD patterns from any EBSD system. Cross Correlation (XCF) methods are then used to measure relative changes in the patterns due to distortion in the crystal lattice caused by stress. The results generated include several measures of data quality as well as the entire relative distortion matrix for each data point. Traditional EBSD methods using the Hough Transform are sensitive to 0.5° compared to XCF at 0.006°.
The software has a unique, clean and uncluttered user interface ensuring the focus stays on your data and its visualization. A novel method for driving the application through navigation widgets eliminates the need for long menu bars and confusing item selection. Designed to work on multiprocessor workstations it will automatically scale according to the CPU hardware available. It is also touch enabled for use on high powered Windows tablets. It can be delivered in various combinations and configurations to suit your analytical needs.
Read More